FICHE 1:

EXERCICE 1:

1) Une solution semble-t-il. 2) $D = [-3; 0] \cup [2; +\infty[\text{ et } S = \{-\frac{9}{8}\} \text{ avec } -\frac{9}{8} \in D.$

3)
$$D = [0; +\infty[. S = \{\frac{1+\sqrt{5}}{2}\}]$$
 car $\frac{1-\sqrt{5}}{2} \notin D$.

EXERCICE 2:

1)
$$D = [1; +\infty[$$
 et $S = \{2 + \sqrt{5}\}$ car $(2 - \sqrt{5}) \notin D$. 2) $D = [-\frac{1}{2}; +\infty[$ et $S = \{1\}$.

EXERCICE 3:

1) a) Si m = -5, alors l'équation est du 1^{er} degré et admet une solution : $x = \frac{3}{20}$.

1) b) Si $m \neq -5$, alors:

 $\Delta_x = 4(3m^2 - 7m - 10)$. On étudie le signe du trinôme : $3m^2 - 7m - 10$.

$$\Delta_m = 169$$
; $m_1 = -1$ et $m_2 = \frac{10}{3}$.

- Si $m \in]-\infty$; -5[\cup]-5; -1[\cup] $\frac{10}{3}$; + ∞ [, alors l'équation admet deux solutions distinctes x_1 et x_2 .
- Si m = -1, alors l'équation admet une solution double $x = -\frac{1}{2}$.
- Si $m = \frac{10}{3}$, alors l'équation admet une solution double $x = \frac{4}{5}$.
- Si $m \in]-1$; $\frac{10}{3}[$, alors l'équation n'a pas de solution dans \mathbb{R} .

EXERCICE 4:

1)
$$a = 2m^2 - m - 1$$
 et $c = -3$.

L'équation est du 2nd degré ssi $a \neq 0$ soit ssi $m \neq 1$ et $m \neq -\frac{1}{2}$.

Par ailleurs, si $m \ne 1$ et $m \ne -\frac{1}{2}$, alors P (produit des racines) = $\frac{c}{a} = -\frac{3}{2m^2 - m - 1}$.

L'équation admet deux racines de signe contraire ssi P < 0

$$P < 0 \Leftrightarrow m \in]-\infty; -\frac{1}{2}[\cup]1; +\infty[$$

Conclusion: L'équation admet deux racines de signe contraire ssi $m \in]-\infty$; $-\frac{1}{2}[\cup]1$; $+\infty[$.

2)
$$a = m$$
 et $c = 2 - m$.

L'équation est du second degré ssi $m \neq 0$.

Par ailleurs, si $m \neq 0$, alors P (produit des racines) = $\frac{c}{a} = \frac{2-m}{m}$

L'équation admet deux racines de signe contraire ssi P < 0

$$P < 0 \Leftrightarrow m \in]-\infty$$
; $0[\cup]2$; $+\infty[$.

Conclusion : L'équation admet deux racines de signe contraire ssi $m \in]-\infty$; $0[\cup]2$; $+\infty[$. EXERCICE 5 :

1) a)
$$D_{g \circ f} =]-\infty$$
; $-\frac{5}{4}] \cup]-1$; $+\infty[$ et pour tout $x \in D_{g \circ f}$, on a : $g \circ f(x) = \sqrt{\frac{4x+5}{x+1}}$.

b) On observe que f(x) semble se rapprocher de 4 pour x assez grand et $g \circ f(x)$ semble se rapprocher de 2 pour x assez grand, soit la limite de $g \circ f$ semble être 2 en $(+\infty)$.

c)
$$\lim_{x \to +\infty} f(x) = 4$$
 donc $\mathbf{b} = \mathbf{4}$ et $\lim_{x \to \mathbf{4}} g(x) = 2$. On observe que : $\lim_{x \to +\infty} g \circ f(x) = \lim_{X \to \mathbf{4}} g(X)$.

2) a)
$$D_{g \circ f} = \mathbb{R}^*$$
 et pour tout $x \in \mathbb{R}^*$, on a : $g \circ f(x) = \frac{1}{x^2}$.

b) On observe que f(x) semble se rapprocher de $(+\infty)$ pour x négatif et grand en valeur absolue et $g \circ f(x)$ semble se rapprocher de 0 pour x négatif et grand en valeur absolue, soit la limite de $g \circ f$ semble être 0 en $(-\infty)$.

c)
$$\lim_{x \to -\infty} f(x) = +\infty$$
 donc $b = +\infty$ et $\lim_{x \to +\infty} g(x) = 0$. On observe que : $\lim_{x \to -\infty} g \circ f(x) = \lim_{X \to +\infty} g(X)$.

3)
$$\lim_{x \to a} g \circ f(x) = c$$
.

EXERCICE 6:

28 page 45:

a)
$$D_f =]-\infty$$
; 1[. On pose $X = \frac{-x+1}{x^2+1}$ pour $x \in]-\infty$; 1[.

 $\lim_{x \to -\infty} \frac{-x+1}{x^2+1} = \lim_{x \to -\infty} \frac{-1}{x} = 0^+ \text{ et } \lim_{X \to 0} \sqrt{X} = 0 \text{ donc, par théorème de composition, on en déduit :}$ $\lim_{x \to -\infty} f(x) = 0.$

b))
$$D_f =]-1$$
; 1[. On pose $X = 1 - x^2$ pour $x \in]-1$; 1[.

 $\lim_{x\to -1} (1-x^2) = 1 - (-1)^2 = 0 \text{ et } \lim_{X\to 0} \sqrt{X} = 0 \text{ donc, par théorème de composition, on en déduit :} \\ \lim_{x\to -1} \sqrt{1-x^2} = 0.$

On pose $X = \sqrt{1 - x^2}$ pour $x \in]-1$; 1[.

 $\lim_{X \to -1} \sqrt{1 - x^2} = 0^+ \text{ et } \lim_{X \to 0^+} \frac{1}{X} = +\infty, \text{ donc, par théorème de composition, on en déduit :}$ $\lim_{X \to -1} f(x) = +\infty.$

On montrera de même que : $\lim_{x \to 1} f(x) = +\infty$.

30 page 46:

a)
$$D_f =]-\infty$$
; 1[. On pose $X = \frac{2x^2}{1-x}$ pour $x < 1$.

 $\lim_{X \to -\infty} \frac{2x^2}{1-x} = +\infty \text{ et } \lim_{X \to +\infty} \sqrt{X} = +\infty \text{ donc, par théorème de composition, on en déduit : } \lim_{X \to -\infty} f(x) = +\infty.$ b) $D_f = [0, +\infty[$. On pose $X = \sqrt{x}$ pour x > 0.

 $\lim_{X \to +\infty} \sqrt{x} = +\infty \text{ et } \lim_{X \to +\infty} \frac{1}{X} = 0^+ \text{ donc, par th\'eor\`eme de composition, on en d\'eduit : } \lim_{X \to +\infty} \frac{1}{\sqrt{x}} = 0^+.$

On pose $X = \frac{1}{\sqrt{x}}$ pour x > 0.

 $\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0^+ \text{ et } \lim_{X \to 0} \sin X = 0 \text{ donc, par théorème de composition, on en déduit : } \lim_{x \to +\infty} f(x) = 0.$

EXERCICE 7: g est la fonction définie sur [1; $+\infty$ [par $g(x) = \sqrt{x^2 + 2} - \sqrt{x^2 - x}$.

1) On pose
$$X = x^2 + 2$$
 pour $x \in \mathbb{R}$.

 $\lim_{x \to +\infty} (x^2 + 2) = +\infty \text{ et } \lim_{X \to +\infty} \sqrt{X} = +\infty, \text{ donc, par th\'eor\`eme de composition : } \lim_{x \to +\infty} \sqrt{x^2 + 2} = +\infty.$ On pose $X = x^2 - x$ pour $x \in [1; +\infty[$.

 $\lim_{x \to +\infty} (x^2 - x) = \lim_{x \to +\infty} (x^2) = +\infty \text{ et } \lim_{X \to +\infty} \sqrt{X} = +\infty, \text{ donc, par théorème de composition :}$ $\lim_{x \to +\infty} \sqrt{x^2 - x} = +\infty.$

On aboutit donc à une forme indéterminée du type $(+\infty) - (+\infty)$.

2) $\forall x \ge 1$, on a

$$g(x) = \frac{(\sqrt{x^2 + 2} - \sqrt{x^2 - x})(\sqrt{x^2 + 2} + \sqrt{x^2 - x})}{(\sqrt{x^2 + 2} + \sqrt{x^2 - x})} = \frac{2 + x}{\sqrt{x^2 + 2} + \sqrt{x^2 - x}}.$$
3) $\forall x \ge 1$, on a : $\sqrt{x^2 + 2} = \sqrt{x^2 \left(1 + \frac{2}{x^2}\right)} = |x| \times \sqrt{1 + \frac{2}{x^2}} = x \times \sqrt{1 + \frac{2}{x^2}}.$

On prouve de même que : $\sqrt{x^2 - x} = x \times \sqrt{1 - \frac{1}{x}}$ pour tout $x \ge 1$.

Pour tout
$$x \ge 1$$
, on a alors : $g(x) = \frac{x \times \left(\frac{2}{x} + 1\right)}{x \times \left(\sqrt{1 + \frac{2}{x^2}} + \sqrt{1 - \frac{1}{x}}\right)} = \frac{1 + \frac{2}{x}}{\sqrt{1 + \frac{2}{x^2}} + \sqrt{1 - \frac{1}{x}}} (\operatorname{car} x \ne 0).$

4)
$$\lim_{x \to +\infty} X = \lim_{x \to +\infty} \left(1 + \frac{2}{x^2}\right) = 1$$
 et $\lim_{X \to 1} \sqrt{X} = 1$, donc, par théorème de composition : $\lim_{x \to +\infty} \sqrt{1 + \frac{2}{x^2}} = 1$.

De même, on prouve que $\lim_{x \to +\infty} \sqrt{1 - \frac{1}{x}} = 1$.

$$\lim_{x \to +\infty} \left(1 + \frac{2}{x}\right) = 1 \text{ et } \lim_{x \to +\infty} \left(\sqrt{1 + \frac{2}{x^2}} + \sqrt{1 - \frac{1}{x}}\right) = 2, \text{ donc par quotient, on en déduit que : } \lim_{x \to +\infty} g(x) = \frac{1}{2}.$$

FICHE 2:

EXERCICE 1:

3 page 72 du LIVRE:

- 1) f(0) = 2 et f'(0) = -1; 2) Pour $x \ne 0$, $\frac{f(x) 2}{x} = \frac{f(x) f(0)}{x 0} = 1$ le coefficient directeur de la sécante (AM) où M(x; f(x)) est un point de la courbe C.
- 3) Puisque f est dérivable en 0 et que f'(0) = -1, alors $\lim_{x \to 0} \frac{f(x) 2}{x} = f'(0) = -1$.

7 page 72 du LIVRE: f(0) = 2; f(-1) = 1; f(2) = -1; f'(0) = 0; f'(-1) = 2 et $f'(2) = -\frac{1}{2}$.

6 page 72 du LIVRE : $y = \frac{1}{2}x + \frac{1}{2}$

45 page 76 du LIVRE:

- a) $\lim_{x \to 0^+} \frac{f(x) f(0)}{x 0} = 0$, ce qui prouve que f est dérivable en 0 et f'(0) = 0.
- b) $\lim_{x \to 0} \frac{f(x) f(0)}{x 0} = 0$, ce qui prouve que f est dérivable en 0 et f'(0) = 0.

TD 6 pages 69//70 du LIVRE :

2 1)
$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{\frac{x + 2}{x + 1} - 2}{x - 0} = \lim_{x \to 0^+} \frac{-x}{x(x + 1)} = \lim_{x \to 0^+} \frac{-1}{x + 1}$$
 (car x est proche de 0, mais n'est pas nul).

D'où : $\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = -1$. Par suite, $f'_{d}(0)$ existe et vaut (-1).

La demi-tangente à droite en A à la courbe représentative de f a pour équation : y = -x + 2.

2)
$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{3}{x + 1} = 3.$$

Par suite, $f'_{g}(0)$ existe et vaut 3.

La demi-tangente à gauche en A à la courbe représentative de f a pour équation : y = 3x + 2.

Remarque : f n'est pas dérivable en 0 car $f'_d(0) \neq f'_g(0)$. A est un point anguleux pour la courbe C_f .

EXERCICE 2:

- 1) $f(-3+h) \approx 2h-1$ pour h voisin de 0; $f(x) \approx -x+4$ pour x voisin de 2.
- 2) a) $f(2 + h) \approx 12h + 8$ pour h voisin de 0;
- 2) b) $(2,001)^3 \approx 8,012$ (h = 0,001); $(1,997)^3 \approx 7,964$ (h = -0,003);
- $(-1,999)^3 = -(1,999)^3$ et $(1,999)^3 \approx 7,988$ (h = -0,001) donc $(-1,999)^3 \approx -7,988$.
- 3) a) $f(a + h) \approx 2ah + a^2$ pour h voisin de 0;
- 3) b) $f(a + h) = a^2 + 2ah + h^2$, donc l'erreur commise est de h^2 ; 3) c) h est tel que $|h| = 10^{-3}$ (c'est-à-dire $h = -10^{-3}$ ou $h = 10^{-3}$).

EXERCICE 3:

8 page 72 du LIVRE:

a)
$$D_f = \mathbb{R}$$
 et $D_{f'} = \mathbb{R}$. $\forall x \in \mathbb{R}$, on a : $f'(x) = 3x^2 - 3x - 5$;

b)
$$D_f = \mathbb{R}$$
 et $D_{f'} = \mathbb{R}$. $\forall x \in \mathbb{R}$, on a : $f'(x) = \frac{x^2}{2} - x + \frac{1}{6}$.

11 page 72 du LIVRE:

a)
$$D_f =]0$$
; $+\infty[$ et $D_{f'} =]0$; $+\infty[$. $\forall x > 0$, on a : $f'(x) = \frac{x-1}{2x\sqrt{x}}$.

b)
$$D_f =]0$$
; $+\infty[$ et $D_{f'} =]0$; $+\infty[$. $\forall x > 0$, on a : $f'(x) = \frac{3x^2 - 1}{2x\sqrt{x}}$.

14 page 72 du LIVRE:

a)
$$\forall x \in [0; \frac{\pi}{2}[, \text{ on a } : f'(x)] = \frac{1}{\sin x - 1};$$

b)
$$\forall x \in \mathbb{R}$$
, on a: $f'(x) = \frac{2\cos x + \sin x + 1}{(2 + \cos x)^2}$.

EXERCICE 4:

EXERCICE 4.		
$f(x) = 2x^3 - 4x^2 + x - 10$ $\mathbf{D}_f = \mathbb{R} \text{ et } \mathbf{D}_{f'} = \mathbb{R}$ $f'(x) = 6x^2 - 8x + 1$	$f(x) = x^{4} - \frac{x^{3}}{3} + \sqrt{2}x - \sqrt{5}$ $\mathbf{D}_{f} = \mathbb{R} \text{ et } \mathbf{D}_{f'} = \mathbb{R}$ $f'(x) = 4x^{3} - x^{2} + \sqrt{2}$	$f(x) = \sqrt{x} + x^{2}$ $D_{f} = [0; +\infty[\text{ et } D_{f}] = [0; +\infty[$ $f'(x) = \frac{1}{2\sqrt{x}} + 2x = \frac{1 + 4x\sqrt{x}}{2\sqrt{x}}$
$f(x) = 3x^{4} - 5x^{3} + 4x - 1$ $\mathbf{D}_{f} = \mathbb{R} \text{ et } \mathbf{D}_{f} \cdot = \mathbb{R}$ $f'(x) = 12x^{3} - 15x^{2} + 4$	$f(x) = \frac{x^2}{2} - \frac{x}{5} + 2$ $\mathbf{D}_f = \mathbb{R} \text{ et } \mathbf{D}_f = \mathbb{R}$ $f'(x) = x - \frac{1}{5}$	$f(x) = \frac{x^3 + 6x - 1}{3}$ $\mathbf{D}_f = \mathbb{R} \text{ et } \mathbf{D}_{f'} = \mathbb{R}$ $f'(x) = x^2 + 2$
$f(x) = \frac{1}{3x}$ $D_f = \mathbb{R} \setminus \{0\} \text{ et } D_f \cdot = \mathbb{R} \setminus \{0\}$ $f'(x) = \frac{1}{3x^2}$	$f(x) = -\frac{1}{3x^4}$ $D_f = \mathbb{R} \setminus \{0\} \text{ et } D_{f'} = \mathbb{R} \setminus \{0\}$ $f'(x) = \frac{4}{3x^5}$	$f(x) = \frac{1}{x^2 - 1}$ $\mathbf{D}_f = \mathbb{R} \setminus \{-1; 1\} \text{ et}$ $\mathbf{D}_{f'} = \mathbb{R} \setminus \{-1; 1\}$ $f'(x) = \frac{-2x}{(x^2 - 1)^2}$

$f(x) = \sqrt{x(x+1)}$ $\mathbf{D}_f = [0; +\infty[\text{ et } \mathbf{D}_f, =]0; +\infty[$ $f'(x) = \frac{3x+1}{2\sqrt{x}}$	$f(x) = \frac{x^2}{x-1}$ $\mathbf{D}_f = \mathbb{R} \setminus \{1\} \text{ et } \mathbf{D}_{f'} = \mathbb{R} \setminus \{1\}$ $f'(x) = \frac{x(x-2)}{(x-1)^2}$	$f(x) = \frac{1}{x^2 + 1}$ $\mathbf{D}_f = \mathbb{R} \text{ et } \mathbf{D}_{f'} = \mathbb{R}$ $f'(x) = \frac{-2x}{(x^2 + 1)^2}$
$f(x) = (4x - 1)(x^{2} + x\sqrt{x})$ $\mathbf{D}_{f} = [0; +\infty[\text{ et } \mathbf{D}_{f}] = [0; +\infty[$ $f'(x) = 12x^{2} + 10x\sqrt{x} - 2x - \frac{3}{2}\sqrt{x}$	$f(x) = \frac{1}{2x^2 - x - 1}$ $\mathbf{D}_f = \mathbb{R} \setminus \{ -\frac{1}{2} ; 1 \} \text{ et}$ $\mathbf{D}_{f'} = \mathbb{R} \setminus \{ -\frac{1}{2} ; 1 \}$ $f'(x) = \frac{-4x + 1}{(2x^2 - x - 1)^2}$	$f(x) = \frac{x+3}{x-1}$ $\mathbf{D}_f = \mathbb{R} \setminus \{1\} \text{ et } \mathbf{D}_f, = \mathbb{R} \setminus \{1\}$ $f'(x) = \frac{-4}{(x-1)^2}$
$f(x) = \frac{1}{\sqrt{x}} - \frac{2}{x^2}$ $\mathbf{D}_f = \mathbf{[0; +\infty[\text{ et } \mathbf{D}_f, = \mathbf{[0; +\infty[}$ $f'(x) = \frac{-1}{2x\sqrt{x}} + \frac{4}{x^3} = \frac{8 - x\sqrt{x}}{2x^3}$	$f(x) = 2\sqrt{x} - \frac{x^5}{5}$ $\mathbf{D}_f = [0; +\infty[\text{ et } \mathbf{D}_f, =]0; +\infty[$ $f'(x) = \frac{1}{\sqrt{x}} - x^4 = \frac{\sqrt{x} - x^5}{x}$	$f(x) = \frac{1 - \cos x}{3 + \sin x}$ $\mathbf{D}_f = \mathbb{R} \text{ et } \mathbf{D}_{f'} = \mathbb{R}$ $f'(x) = \frac{3\sin x - \cos x + 1}{(3 + \sin x)^2}$

FICHE 3:

EXERCICE 1:

16 page 73 du LIVRE : a) y = -2x + 1; b) y = x.

19 page 73 du LIVRE:

a) Soit $f: x \mapsto x^3$. f est dérivable sur \mathbb{R} et $f': x \mapsto 3x^2$.

L'approximation affine locale de f en 1 est :

 $f(1+h) \approx f'(1) \times h + f(1)$ soit $f(1+h) \approx 3h + 1$ pour h voisin de 0.

Conclusion: $(1+x)^3 \approx 3x + 1$ pour x voisin de 0.

b) Soit
$$f: x \mapsto \sqrt{x}$$
. f est dérivable sur $]0$; $+\infty[$ et $f': x \mapsto \frac{1}{2\sqrt{x}}$.

L'approximation affine locale de f en 1 est :

$$f(1+h) \approx f'(1) \times h + f(1)$$
 soit $f(1+h) \approx \frac{1}{2}h + 1$ pour h voisin de 0.

Conclusion: $\sqrt{1+x} \approx \frac{1}{2}x + 1$ pour x voisin de 0.

c) Soit
$$f: x \mapsto \frac{1}{x}$$
. f est dérivable sur $\mathbb{R} \setminus \{0\}$ et $f': x \mapsto -\frac{1}{x^2}$.

L'approximation affine locale de f en 1 est :

 $f(1+h) \approx f'(1) \times h + f(1)$ soit $f(1+h) \approx -h+1$ pour h voisin de 0.

Conclusion: $\frac{1}{1+x} \approx 1 - x$ pour x voisin de 0.

d) Soit $f: x \mapsto \sin x$. f est dérivable sur \mathbb{R} et $f': x \mapsto \cos x$.

L'approximation affine locale de f en 0 est :

 $f(0+h) \approx f'(0) \times h + f(0)$ soit $f(h) \approx 1 \times h + 0$.

Conclusion : $\sin x \approx x$ pour x voisin de 0.

EXERCICE 2:

23 page 73 du LIVRE:

1) f(-1) est un extremum local pour la fonction f donc f'(-1) = 0.

f(-1) est un extremum local pour f et cet extremum local est nul, donc f(-1) = 0.

2)
$$\forall x \neq 1$$
, on a : $f'(x) = \frac{ax^2 - 2ax - b - 1}{(x - 1)^2}$.

En traduisant les données f'(-1) = 0 et f(-1) = 0, on aboutit au système : $\begin{cases} 3a - b = 1 \\ a - b = -1 \end{cases}$. Ce système a pour solution : a = 1 et b = 2.

Conclusion:
$$\forall x \neq 1$$
, on a: $f(x) = \frac{(x+1)^2}{x-1}$ et $f'(x) = \frac{x^2 - 2x - 3}{(x-1)^2} = \frac{(x+1)(x-3)}{(x-1)^2}$.

f' s'annule en changeant de signe pour x = -1, ce qui prouve que f admet un extremum local en x = -1. Par ailleurs, on a : f(-1) = 0. Donc f(-1) est bien un extremum local pour f et cet extremum local est nul.

EXERCICE 3:
$$f$$
 est la fonction définie sur $\mathbb{R} - \{2\}$ par $f(x) = \frac{1}{2}x^2 + x + \frac{4}{x-2}$

1) f est une fonction rationnelle définie sur $\mathbb{R} \setminus \{2\}$, donc f est dérivable sur $\mathbb{R} \setminus \{2\}$.

$$\forall x \in \mathbb{R} \setminus \{2\}, \text{ on a } : f'(x) = x + 1 - \frac{4}{(x-2)^2} = \dots = \frac{x^2(x-3)}{(x-2)^2}.$$

$$\lim_{x \to +\infty} \left(\frac{1}{2} x^2 + x \right) = + \infty \text{ et } \lim_{x \to +\infty} \left(\frac{4}{x - 2} \right) = 0, \text{ donc par somme } \lim_{x \to +\infty} f(x) = + \infty.$$

$$\lim_{x \to +\infty} \left(\frac{1}{2} x^2 + x \right) = + \infty \text{ et } \lim_{x \to +\infty} \left(\frac{4}{x - 2} \right) = 0, \text{ donc par somme } \lim_{x \to +\infty} f(x) = + \infty.$$

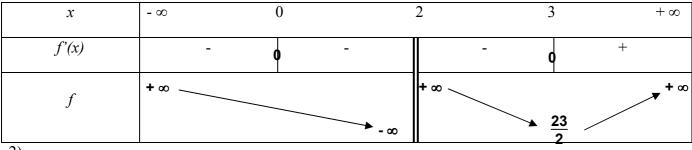
$$\lim_{x \to -\infty} \left(\frac{1}{2} x^2 + x \right) = \lim_{x \to -\infty} \left(\frac{1}{2} x^2 \right) = + \infty \text{ et } \lim_{x \to -\infty} \left(\frac{4}{x - 2} \right) = 0, \text{ donc par somme } \lim_{x \to -\infty} f(x) = + \infty.$$

$$\lim_{x \to 2^{-}} 4 = 4$$
 et $\lim_{x \to 2^{-}} (x - 2) = 0^{-}$, donc par quotient $\lim_{x \to 2^{-}} \left(\frac{4}{x - 2} \right) = -\infty$.

$$\lim_{x \to 2^{-}} 4 = 4 \text{ et } \lim_{x \to 2^{-}} (x - 2) = 0^{-}, \text{ donc par quotient } \lim_{x \to 2^{-}} \left(\frac{4}{x - 2}\right) = -\infty.$$

$$\lim_{x \to 2^{-}} \left(\frac{1}{2}x^{2} + x\right) = 4 \text{ et } \lim_{x \to 2^{-}} \left(\frac{4}{x - 2}\right) = -\infty, \text{ donc par somme } \lim_{x \to 2^{-}} f(x) = -\infty.$$
On montro de la môme fecen que lim $f(x) = +\infty$

On montre de la même façon que $\lim_{x \to 2^+} f(x) = +\infty$



- 2)
- D'après le tableau de variations précédent, sur [2 ; 3] la fonction f est strictement décroissante, donc: $\forall x \in [2; 3[$, on a: f(2) > f(x) > f(3) d'où f(x) > 11,5 > 10.
- D'après le tableau de variations précédent, sur $[3; +\infty[$ la fonction f est strictement croissante, donc: $\forall x \in [3; +\infty[$, on a: $f(x) \ge f(3)$ d'où $f(x) \ge 11,5 > 10$.

Conclusion: $\forall x \in [2; +\infty[$, on a f(x) > 10, ce qui prouve que 10 est un minorant de la fonction $f \operatorname{sur} [2; +\infty[$.

EXERCICE 4:

EXERCICE 4: PARTIE A
1)
$$M(x; y) \in C \cap (Ox) \Leftrightarrow \begin{cases} y = x^2 - 4x + 5 \\ y = 0 \end{cases} \Leftrightarrow \begin{cases} x^2 - 4x + 5 = 0 \\ y = 0 \end{cases}$$

On est ramené à résoudre l'équation : $x^2 - 4x + 5 = 0$

On trouve $\Delta = -4$. $\Delta < 0$, donc l'équation : $x^2 - 4x + 5 = 0$ n'a pas de solution dans \mathbb{R} .

Conclusion: La courbe
$$C$$
 ne coupe pas l'axe des abscisses
2) $M(x; y) \in C \cap (Oy) \Leftrightarrow \begin{cases} y = x^2 - 4x + 5 \\ x = 0 \end{cases} \Leftrightarrow \begin{cases} y = 5 \\ x = 0 \end{cases}$

Conclusion : La courbe C coupe l'axe des ordonnées au point A(0; 5).

3) Ici, a = 2.

①
$$D_f = \mathbb{R}$$
. Soit $x \in D_f$.

$$x \in D_f \iff x \in \mathbb{R} \iff 2 \times 2 - x \in \mathbb{R} \iff 2a - x \in D_f$$
.

 D_f est bien centré en a = 2.

② Soit $x \in D_f$. Montrons que f(x) = f(2a - x) soit f(x) = f(4 - x).

$$f(2a-x) = f(4-x) = (4-x)^2 - 4(4-x) + 5 = \dots = x^2 - 4x + 5 = f(x)$$

 $\forall x \in D_f$, on a bien $f(x) = f(2 \times 2 - x)$.

Conclusion: Sous ces deux conditions, la droite d'équation x = 2 est bien axe de symétrie de la courbe C dans le repère orthonormé $(O; \vec{i}; \vec{j})$.

• Limites: f est une fonction polynôme, donc:

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^2 = +\infty \quad \text{et} \quad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^2 = +\infty$$

• **Dérivée de f:** La fonction f est une fonction polynôme, donc f est dérivable sur \mathbb{R} .

$$\forall x \in \mathbb{R}$$
, on a : $f'(x) = 2x - 4$.

• Tableau de variation de f

$$f'(x) = 0 \iff 2x - 4 = 0 \iff x = 2$$



5) a) Équation de la tangente (T) à la courbe C au point d'abscisse 3

$$(T): y = f'(3)(x-3) + f(3)$$

On trouve : (
$$T$$
) : $y = 2x - 4$

5) b) Position relative de (T) et C.

On étudie le signe de f(x) - (2x - 4) sur \mathbb{R} et on trouve que :

$$\forall x \in D_f, f(x) - (2x - 4) \ge 0$$

La parabole C est toujours au dessus de la droite (T).

6) Voir au verso.

PARTIE B

1)
$$\mathcal{D}_0$$
: $y = 2x$ et \mathcal{D}_{-5} : $y = 2x - 5$.

2) Nombre de points d'intersection de la parabole C et de la droite D_m

$$M(x; y) \in C \cap D_m \Leftrightarrow \begin{cases} y = x^2 - 4x + 5 \\ y = 2x + m \end{cases} \Leftrightarrow \begin{cases} 2x + m = x^2 - 4x + 5 \\ y = 2x + m \end{cases} \Leftrightarrow \begin{cases} x^2 - 6x + 5 - m = 0 \\ y = 2x + m \end{cases}$$
On est ramené à résoudre l'équation: $x^2 - 6x + 5 - m = 0$

on est ramene a resonant requ

On trouve que :
$$\Delta = 16 + 4m$$
.

L'équation
$$x^2 - 6x + 5 - m = 0$$
 a :

$$\triangleright$$
 aucune solution ssi $\Delta < 0 \iff m < -4$

$$ightharpoonup$$
 1 solution ssi $\Delta = 0 \Leftrightarrow m = -4$

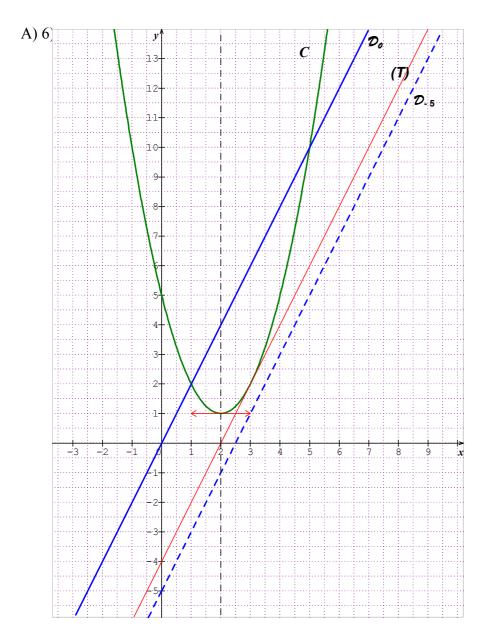
$$\triangleright$$
 2 solutions distinctes ssi $\Delta > 0 \iff m > -4$

On en déduit que :

La parabole C et la droite D_m n'ont aucun point commun ssi m < -4.

La parabole C et la droite D_m ont un unique point commun ssi m = -4.

La parabole C et la droite D_m ont 2 points communs distincts ssi m > -4.



EXERCICE 5:

1)
$$\forall x \in \mathbb{R}$$
, on a: $f(x + \pi) = \cos^2(x + \pi) = (-\cos x)^2 = \cos^2 x = f(x)$.

Ceci prouve que f est périodique de période π .

2) $D = \mathbb{R}$ est centré en 0 ;

 $\forall x \in \mathbb{R}$, on a : $f(-x) = \cos^2(-x) = \cos^2 x = f(x)$ car la fonction cosinus est paire sur \mathbb{R} .

Sous ces deux conditions, on en déduit que f est une fonction paire sur \mathbb{R} , donc l'axe des ordonnées est un axe de symétrie pour C dans un repère orthogonal.

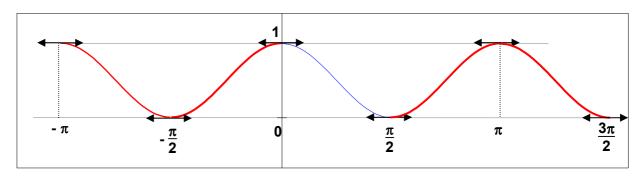
3) La fonction cosinus est dérivable sur \mathbb{R} , donc par produit, la fonction f est aussi dérivable sur \mathbb{R} .

$$\forall x \in \mathbb{R}$$
, on a : $f'(x) = -2\sin x \cos x$;

$$\forall x \in]0; \frac{\pi}{2}[\text{ on a : } \cos x > 0 \text{ et } \sin x > 0, \text{ et par suite } f'(x) < 0 \text{ et on a } f'(0) = 0 \text{ et } f'(\frac{\pi}{2}) = 0$$

La fonction f est donc strictement décroissante sur $[0; \frac{\pi}{2}]$. On a : f'(0) = 0 et $f'(\frac{\pi}{2}) = 0$, donc la courbe Cadmet une tangente horizontale aux points d'abscisses 0 et $\frac{\pi}{2}$

4) On trace la courbe représentant f sur $[0; \frac{\pi}{2}]$, puis par symétrie par rapport à l'axe des ordonnées, on construit la courbe sur $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$. La fonction f étant périodique de période π , pour obtenir la courbe C, on trace les translatées de la courbe obtenue sur $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ par les translations de vecteurs $k\pi \vec{i}$ où $k \in \mathbb{Z}$.



EXERCICE 6:

27 page 74 du LIVRE:

a)
$$\forall x \in \mathbb{R}$$
, on a: $f'(x) = 6(x+1)(x^2+2x-3)^2$.

b)
$$\forall x \in \mathbb{R} \setminus \{-2\}$$
, on a : $f'(x) = \frac{3}{(x+2)^2} \times \left(\frac{x+1}{x+2}\right)^2$.

c)
$$\forall u \in \mathbb{R}$$
, on a : $f'(u) = 4(2u + 3)$.

d)
$$\forall u \in \mathbb{R}$$
, on a : $f'(u) = 9(3u - 1)^2$.

28 page 74 du LIVRE:

a)
$$\forall x \in \mathbb{R}$$
, on a : $f'(x) = -2\sin(2x)$.

b)
$$\forall x \in \mathbb{R}$$
, on a : $f'(x) = 3\cos(3x - \frac{\pi}{3})$.

c)
$$\forall t \in \mathbb{R}$$
, on a : $f'(t) = \frac{1}{2}\cos\left(\frac{t}{2}\right)$.

29 page 74 du LIVRE:

a)
$$\forall x \in]-\infty$$
; 4[, on a: $f'(x) = \frac{-1}{2\sqrt{4-x}}$.

b)
$$\forall x \in \mathbb{R}$$
, on a : $f'(x) = \frac{x}{\sqrt{x^2 + 1}}$.

c)
$$\forall x \in]-2$$
; $+\infty[$, on a: $f'(x) = \frac{-\sqrt{x+2}}{2(x+2)^2}$.

a)
$$\forall x \in]-\infty$$
; $4[$, on $a : f'(x) = \frac{-1}{2\sqrt{4-x}}$.
b) $\forall x \in \mathbb{R}$, on $a : f'(x) = \frac{x}{\sqrt{x^2+1}}$.
c) $\forall x \in]-2$; $+\infty[$, on $a : f'(x) = \frac{-\sqrt{x+2}}{2(x+2)^2}$.
d) $\forall t \in]-1$; $2[$, on $a : x'(t) = \frac{3\sqrt{2-t}}{2\sqrt{t+1}(2-t)^2}$.

85 page 82 du LIVRE:

- **1.** En utilisant les notations de l'énoncé, on a : $f = g \circ u$
 - *u* est dérivable sur *D* ;
 - $\forall x \in D$, on a : u(x) > 0;
 - La fonction $g: x \mapsto \sqrt{x}$ est dérivable sur $]0; +\infty[$;

Donc, par théorème de composition, on en déduit que la fonction $f = g \circ u$ est dérivable sur D.

 $\forall x \in D$, on a : $f'(x) = u'(x) \times g'[u(x)] = u'(x) \times \frac{1}{2\sqrt{u(x)}}$ d'après le pré-requis. D'où le résultat demandé.

2. On a
$$f = \sqrt{u}$$
 avec $u(x) = x^2(1-x)$.

La fonction u est dérivable sur \mathbb{R} (fonction polynôme) donc sur [0; 1];

 $\forall x \in [0; 1[, \text{ on a } : u(x) > 0].$

Par suite, d'après la question 1), la fonction f est dérivable sur]0; 1[. Il reste à étudier la dérivabilité de f en 0 et en 1.

Dérivabilité en 0 :

$$\frac{f(x) - f(0)}{x - 0} = \sqrt{1 - x} \text{ (indication : } \sqrt{x^2} = |x| = x \text{ car } x > 0).$$

 $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 1$, donc f est dérivable à droite en 0 et $f'_d(0) = 1$.

Dérivabilité en 1 :

$$\frac{f(x) - f(1)}{x - 1} = -\sqrt{\frac{x^2}{1 - x}} (indication : \sqrt{(1 - x)^2}) = |1 - x| = 1 - x \ car \ x \in [0 ; 1[)]$$

 $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = -\infty, \text{ donc la fonction } f \text{ n'est pas dérivable en 1}.$

Enfin, pour tout
$$x \in]0$$
; 1[, on a : $f'(x) = \frac{x(2-3x)}{2\sqrt{x^2(1-x)}}$.

x	0		<u>2</u> 3	1
f'(x)	1	+	0	-
f	0		$\frac{2\sqrt{3}}{9}$	0

EXERCICE 7:

$$f(x) = (\sqrt{3}x - 1)(x^{2} + x - 1)$$

$$D_{f} = \mathbb{R} \text{ et } D_{f} = \mathbb{R}$$

$$f'(x) = 3\sqrt{3}x^{2} + (2\sqrt{3} - 2)x - \sqrt{3} - 1$$

$$D_{f} = \mathbb{R} \text{ et } D_{f} = \mathbb{R}$$

$$f'(x) = \frac{-16x^{5} + \sqrt{2}x^{2} - 2}{4x^{2}}$$

$$D_{f} = \mathbb{R} \text{ et } D_{f} = \mathbb{R} \setminus \{1\} \text{ et } D_{f} = \mathbb{R} \setminus \{1\}$$

$$f'(x) = \frac{-6(2x + 1)}{4x^{2}}$$

$$f'(x) = \frac{-6(2x + 1)}{(x - 1)^{3}}$$

$$f'(x) = \frac{-1}{(x - 1)^{3}}$$

$$f'(x) = \frac{-1}{(x - 1)^{3}}$$

$$f'(x) = \frac{1}{2}; + \infty[$$

$f(x) = \sqrt{1 - x}$ $\mathbf{D}_f =]-\infty; 1] \text{ et } \mathbf{D}_{f'} =]-\infty; 1[$ $f'(x) = \frac{-1}{2\sqrt{1 - x}}$	$f(x) = (x^{2} - 2x + 5)^{2}$ $\mathbf{D}_{f} = \mathbb{R} \text{ et } \mathbf{D}_{f} = \mathbb{R}$ $f'(x) = 4(x - 1)(x^{2} - 2x + 5)$	$f(x) = (\sqrt{x} + 1)^{2}$ $\mathbf{D}_{f} = [0; +\infty[\text{ et } \mathbf{D}_{f} \cdot =]0; +\infty[$ $f'(x) = \frac{\sqrt{x} + 1}{\sqrt{x}}$
$f(x) = \sqrt{3x^2 + 2x + 5}$ $\mathbf{D}_f = \mathbb{R} \text{ et } \mathbf{D}_f = \mathbb{R}$ $f'(x) = \frac{3x + 1}{\sqrt{3x^2 + 2x + 5}}$	$f(x) = \frac{1}{(x^2 - 1)^5}$ $D_f = \mathbb{R} \setminus \{-1; 1\} \text{ et } D_{f'} = \mathbb{R} \setminus \{-1; 1\}$ $f'(x) = \frac{-10x}{(x^2 - 1)^6}$	$f(x) = x^{2} + 1 - \frac{1}{x^{2} + 1}$ $\mathbf{D}_{f} = \mathbb{R} \text{ et } \mathbf{D}_{f}, = \mathbb{R}$ $f'(x) = \frac{2x((x^{2} + 1)^{2} + 1)}{(x^{2} + 1)^{2}}$
$f(x) = \cos\left(x + \frac{1}{x}\right)$ $\mathbf{D}_f = \mathbb{R} \setminus \{0\} \text{ et } \mathbf{D}_{f'} = \mathbb{R} \setminus \{0\}$ $f'(x) = \frac{1 - x^2}{x^2} \sin\left(x + \frac{1}{x}\right)$	$f(x) = (2x^{3} + 3x - 1)^{4}$ $\mathbf{D}_{f} = \mathbb{R} \text{ et } \mathbf{D}_{f} = \mathbb{R}$ $f'(x) = 12(2x^{2} + 1)(2x^{3} + 3x - 1)^{3}$	$f(x) = \sqrt{3 + 2\sin^2 x}$ $\mathbf{D}_f = \mathbb{R} \text{ et } \mathbf{D}_{f'} = \mathbb{R}$ $f'(x) = \frac{2\sin x \cos x}{\sqrt{3 + 2\sin^2 x}}$
$f(x) = \frac{x-1}{x+3} \sqrt{x}$ $\mathbf{D}_f = [0; +\infty[\text{ et } \mathbf{D}_f] = [0; +\infty[$ $f'(x) = \frac{x^2 + 10x - 3}{2\sqrt{x}(x+3)^2}$	$f(x) = \frac{2}{x^2 - x + 1} + \sqrt{2x}$ $\mathbf{D}_f = [0; +\infty[\text{ et } \mathbf{D}_{f'} =]0; +\infty[$ $f'(x) = \frac{-4x(2x-1) + \sqrt{2x}(x^2 - x + 1)^2}{2x(x^2 - x + 1)^2}$	$f(x) = \frac{x-1}{2} + \frac{2}{x-1}$ $D_f = \mathbb{R} \setminus \{1\} \text{ et } D_{f'} = \mathbb{R} \setminus \{1\}$ $f'(x) = \frac{x^2 - 2x - 3}{2(x-1)^2}$

EXERCICE 8 : Les équations des tangentes à la courbe C représentant la fonction f, au point d'abscisse a, sont :

f définie par $f(x) = x^2 - 2x + 1$ et $a = 1$	f définie par $f(x) = \frac{1}{x} - 1$ et $a = -2$
y = 0	$y = -\frac{1}{4}x - 2$
f définie par $f(x) = \sqrt{x}$ et $a = 3$ $y = \frac{\sqrt{3}}{6}x + \frac{\sqrt{3}}{2}$	f définie par $f(x) = x^2 - \frac{1}{x-1}$ et $a = 2$
$f ext{ définie par } f(x) = \sqrt{x + 5} ext{ et } a = -1$	$y = 5x - 7$ $f \text{ définie par } f(x) = (3x + 1)^2 \text{ et } a = 0$
$y = \frac{1}{4}x + \frac{9}{4}$	y = 6x + 1
f définie par $f(x) = x\sqrt{x}$ et $a = 1$	f définie par $f(x) = x^2 - 1 $ et $a = 2$
$y = \frac{3}{2}x - \frac{1}{2}$	y = 4x - 5

ÉLÉMENTS DE RÉPONSE DES EXERCICES DU CHAPITRE 1. EXERCICE 9 :

36 page 74 du LIVRE:

1) $\forall x \in [0; 1[$, on a: $f(x) = \sqrt{u(x)}$ où u est la fonction définie sur $\mathbb{R} \setminus \{1\}$ par : $u(x) = \frac{x^3}{1-x}$.

- u est une fonction rationnelle définie sur $\mathbb{R} \setminus \{1\}$, donc u est dérivable sur [0; 1];
- $\forall x \in [0; 1[, \text{ on a} : u(x) \in [0; +\infty[;$
- la fonction $x \mapsto \sqrt{x}$ est dérivable sur $]0 ; +\infty[$,

sous ces trois conditions, par théorème de composition, on en déduit que la fonction $f = \sqrt{u}$ est dérivable sur]0; 1[.

- 2) a) Le théorème de composition pour la dérivation donne des conditions suffisantes pour en déduire que la fonction $f = \sqrt{u}$ est dérivable sur]0; 1[. Pour savoir si f est dérivable en 0, il faut revenir à la définition.
- 2) b) On montre que pour tout $x \in]0$; $1[, t(x) = \sqrt{\frac{x}{1-x}}]$.

 $\lim_{x \to 0^+} t(x) = 0$, ce qui prouve que la fonction f est dérivable en 0 et f'(0) = 0.

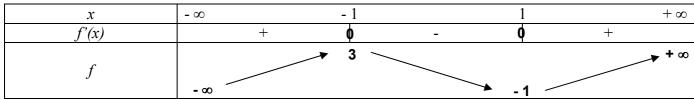
EXERCICE 10:

24 page 73 du LIVRE:

1)
$$\lim_{x \to +\infty} f(x) = +\infty$$
 et $\lim_{x \to -\infty} f(x) = -\infty$.

2) f est une fonction polynôme, donc f est dérivable sur \mathbb{R} .

 $\forall x \in \mathbb{R}$, on a : f'(x) = 3(x-1)(x+1).



Conclusion : f est strictement croissante sur $]-\infty$; -1] et sur $[1;+\infty[;f]$ est strictement décroissante sur [-1;1].

- f est dérivable sur $]-\infty$; -1] et f'(x) > 0 sur $]-\infty$; -1[. Par ailleurs, $f(]-\infty$; -1[) = $]-\infty$; 3 [et $0 \in]-\infty$; 3[, donc, d'après le théorème de la bijection, on en déduit que l'équation f(x) = 0 admet une unique solution α_1 dans $]-\infty$; -1[.
- f est dérivable sur [-1; 1] et f'(x) < 0 sur [-1; 1[. Par ailleurs, f(]-1; 1[) = [-1; 3[et $0 \in]-1; 3[$, donc, d'après le théorème de la bijection, on en déduit que l'équation f(x) = 0 admet une unique solution α_2 dans [-1; 1[.
 - On montre de la même façon que l'équation f(x) = 0 admet une unique solution α_3 sur l'intervalle $[1; +\infty[$.

4)

f(-2) = -1 et f(-1) = 3. Donc $f(-2) \times f(-1) < 0$. Par suite, on a : $-2 < \alpha_1 < -1$.

f(-1,9) = -0.159 et f(-1,8) = 0.568. Donc $f(-1,9) \times f(-1,8) < 0$. Par suite : $[-1.9 < \alpha_1 < -1.8]$.

Par balayage, on trouve de la même façon que : $0.3 < \alpha_2 < 0.4$ et $1.5 < \alpha_3 < 1.6$.

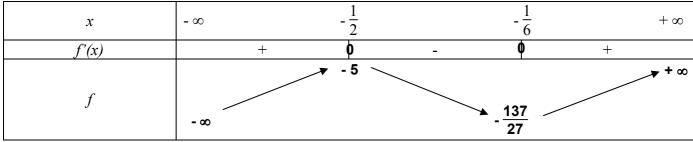
56 page 77 du LIVRE :
$$x(2x+1)^2 = 5 \iff 4x^3 + 4x^2 + x - 5 = 0$$

On étudie la fonction $f: x \mapsto 4x^3 + 4x^2 + x - 5$.

f est une fonction polynôme, donc f est dérivable sur \mathbb{R} et f': $x \mapsto 12x^2 + 8x + 1$.

Le trinôme $(12x^2 + 8x + 1)$ admet deux racines : $-\frac{1}{2}$ et $-\frac{1}{6}$.

On obtient le tableau de variations suivant :



Par lecture du tableau de variations, on a :

- sur]- ∞ ; $\frac{1}{6}$], $f(x) \le -5 < 0$, donc l'équation f(x) = 0 ou $x(2x + 1)^2 = 5$ n'a pas de solution sur $]-\infty$; $-\frac{1}{6}$]
- sur $]-\frac{1}{6}$; $+\infty[$, f est dérivable; f'(x) > 0 et $f(]-\frac{1}{6}$; $+\infty[$) = $]-\frac{137}{27}$; $+\infty[$. Comme $0 \in]-\frac{137}{27}$; $+\infty[$, alors, d'après le théorème de la bijection, on en déduit que l'équation f(x) = 0 admet une unique solution α dans l'intervalle $\left] -\frac{1}{6} \right] + \infty [$.

Conclusion: L'équation f(x) = 0 ou $x(2x + 1)^2 = 5$ admet une unique solution dans \mathbb{R} , cette solution α appartient à]- $\frac{1}{6}$; + ∞[.

Par balayage avec la calculatrice, on obtient successivement :

f(0,7) = -0.968 et f(0,8) = 0.408. Donc $f(0,7) \times f(0,8) < 0$ et par suite : $0.7 < \alpha < 0.8$.

 $f(0,77) \approx -0.032$ et $f(0,78) \approx 0.112$. Donc $f(0,77) \times f(0,78) < 0$ et par suite : $0.77 < \alpha < 0.78$.

Un encadrement d'amplitude 10^{-2} de la solution est : $0.77 < \alpha < 0.78$.

40 page 74 du LIVRE:

f est une fonction polynôme, donc f est indéfiniment dérivable sur \mathbb{R} .

1)
$$\forall x \in \mathbb{R}$$
, on a: $f'(x) = \frac{x^3}{3} + \frac{x^2}{2} + x + 1$ et $f''(x) = x^2 + x + 1$.

2) a) le discriminant du trinôme $(x^2 + x + 1)$ est $\Delta = -3$. f''(x) est donc du signe de a pour tout $x \in \mathbb{R}$.

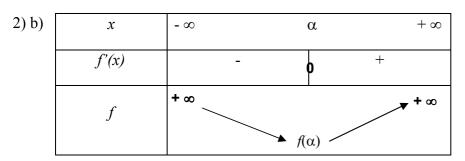
Conclusion: $\forall r \in \mathbb{R} \ f''(r) > 0$

Conclusion . v .	$x \in \mathbb{R}, f(x) \geq 0$		
x	- ∞	α	$+\infty$
f''(x)		+	
f'	- ∞	0	+ * *

Sur]- ∞ ; + ∞ [, la fonction f' est dérivable, f''(x) > 0 et f'(]- ∞ ; + ∞ [) =]- ∞ ; + ∞ [.

Comme $0 \in f'(]-\infty$; $+\infty[$), alors d'après le théorème de la bijection, on en déduit qu'il existe un unique α appartenant à $]-\infty$; $+\infty[$ tel que $f'(\alpha)=0$.

Comme f' est strictement croissante sur \mathbb{R} , alors : $\forall x < \alpha$, on a : f'(x) < 0 et $\forall x > \alpha$, on a : f'(x) > 0.



EXERCICE 11 : Non rédigé ! Utiliser le théorème de la bijection.

- a) Une solution: -2;
- **b)** 2 solutions : l'une appartient à]- ∞ ; 2[et l'autre appartient à]- 2 ; 3[.